Categories
Machine Learning Medicine

ML and the shifting landscape of medicine

“A process cannot be understood by stopping it. Understanding must move with the flow of the process, must join it and flow with it.”

Frank Herbert, Dune

Imagine a spectacularly accurate machine learning (ML) algorithm for medicine. One that has been grown and fed with the finest of high quality clinical data, culled and collated from the most storied and diverse clinical sites across the country. It can make diagnoses and prognoses even Dr. House would miss.

Then the covid19 pandemic happens. All of a sudden, prognostic accuracy collapses. What starts as a cough ends up as Acute Respiratory Distress Syndrome (ARDS) at rates not seen in the last decade of training data. The treatments that worked best for ARDS with influenza don’t work nearly as well. Medications such as dexamethasone that have been shown not to help patients with ARDS prove remarkably effective.  Patients suffer and the  ML algorithm appears unhelpful. Perhaps this is overly harsh. After all, this is not just a different context from the original training data (i..e “dataset shift”), it’s a different causal mechanism of disease. Also, unlike some emergent diseases which present with unusual constellations of findings—like AIDS—coivd19 looks like a lot of common inconsequential infections often until the patient is sick enough to be admitted to a hospital. Furthermore, human clinicians were hardly doing better in March of 2020. Does that mean that if we use ML in the clinic, then clinicians cannot decrease alertness for anomalous patient trajectories? Such anomalies are not uncommon but rather a property of the way medical care changes all the time. New medications are introduced every year with novel mechanisms of action which introduce new outcomes which can be discontinuous as compared to prior therapies and also novel associations of adverse events. Similarly new devices create new biophysical clinical trajectories with new feature sets.

These challenges are not foreign to the current ML literature. There are scores of frameworks for anomaly detection1, for model switching 2, for feature evolvable streaming learning3. They are also not new to the AI literature. Many of these problems were encountered in symbolic AI and were closely related to the Frame Problem that bedeviled AI researchers in the 1970s and 1980s. I’ve pointed this out with my colleague Kun-Hsing Yu4 and discussed some of the urgent measures we must take to ensure patient safety.  Many of these are obvious such as clinician review of cases with atypical features of feature distributions, calibration with human feedback and repeated prospective trials. These stopgap measures do not however address the underlying brittleness that will and should decrease trust in the performance of AI programs in clinical care. So although these challenges are not foreign , there is an exciting and urgent opportunity for researchers in ML to address them in the clinical context especially because there is a severe data penury relative to our other ML application domains. I look forward to discussions on these issues in our future ML+clinical meetings (including our SAIL gathering).

1. Golan I, El-Yaniv R. Deep Anomaly Detection Using Geometric Transformations [Internet]. In: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R, editors. Advances in Neural Information Processing Systems. Curran Associates, Inc.; 2018. p. 9758–69.Available from: https://proceedings.neurips.cc/paper/2018/file/5e62d03aec0d17facfc5355dd90d441c-Paper.pdf

2. Alvarez M, Peters J, Lawrence N, Schölkopf B. Switched Latent Force Models for Movement Segmentation [Internet]. In: Lafferty J, Williams C, Shawe-Taylor J, Zemel R, Culotta A, editors. Advances in Neural Information Processing Systems. Curran Associates, Inc.; 2010. p. 55–63.Available from: https://proceedings.neurips.cc/paper/2010/file/3a029f04d76d32e79367c4b3255dda4d-Paper.pdf

3. Hou B, Zhang L, Zhou Z. Learning with Feature Evolvable Streams. IEEE Trans Knowl Data Eng [Internet] 2019;1–1. Available from: http://dx.doi.org/10.1109/TKDE.2019.2954090

4. Yu K-H, Kohane IS. Framing the challenges of artificial intelligence in medicine. BMJ Qual Saf [Internet] 2019;28(3):238–41. Available from: http://dx.doi.org/10.1136/bmjqs-2018-008551